0$房天下问答|高中竞赛不等式$https://m.fang.com/ask/ask_985849.html$https://static.soufunimg.com/common_m/m_public/201511/images/asksharedefault.png
packc/pages/ask/detail/detail?askid=985849
共1个回答
-
-
-
h564335
丨Lv 0
证明 设△PBC,△PCA,△PAB的面积分别为x/2,y/2,z/2,令BC=a,CA=b,AB=c。则有:a*PA≥y+z,b*PB≥z+x,c*PC≥x+y。a*PD=x,b*PE=y,c*PF=z。所以得:PA/(PA+kPD)≥(y+z)/(y+z+kx) ,PB/(PB+kPE)≥(z+x)/(z+x+ky) ,PC/(PC+kPF)≥(x+y)/(x+y+kz) 。故只需证:(y+z)/(y+z+kx)+(z+x)/(z+x+ky)+(x+y)/(x+y+kz)≥6/(2+k) 上式化简整理为:[k(y-x)+k(z-x)]/(y+z+kx)+[k(z-y)+k(x-y)]/(z+x+ky)+[k(x-z)+k(x-y)]/(x+y+kz)≥0<===>k(k-1)(y-z)^2/[(x+y+kz)(z+x+ky)]+k(k-1)(z-x)^2/[(y+z+kx)(x+y+kz)]+k(k-1)(x-y)^2/[(z+x+ky)(y+z+kx)] ≥0当k≥1时,上式显然成立,故不等式成立.
免责声明:问答内容均来源于互联网用户,房天下对其内容不负责任,如有版权或其他问题可以联系房天下进行删除。

关注成功