房天下 > 房天下问答 > 业主生活 > 其他
  • X个N维空间可把一个N+1维空间最多分成几部份 ?

    RT

    提问者:北京vista

    发布于2008-08-14

共1个回答
  • 我是小达 丨Lv 4
    解答: 若在r维空间中,n个r-1维超平面最多可以把空间切割成W(n,r)部分,则W(n,r)= C(n,0)+C(n,1)+C(n,2)+…+C(n,r)。(其中,C(n,i) =n!/(i!(n-i)!)表示n个数中取i个数组合的个数(i=0,1,2,…,r),当n<r时,C(n,i)=0)证明如下: 设r维空间的n-1个r-1维超平面可把空间分割的部分最多为W(n-1,r),再加入一个r-1维超平面,要保证使这n个r-1维超平面把空间分割的部分最多,就必须使已有的n-1个超平面和这超平面相交的n-1条r-2维超直线把后加入的这个r-1维超平面分割的部分最多,因此得到 W(n,r)-W(n-1,r)=W(n-1,r-1) (1)对r用数学归纳法证明:W(n,r)=C(n,0)+C(n,1)+C(n,2)+…+C(n,r)。当r=1时,即n个点最多可以把直线分为n+1部分,而n+1=C(n,0)+C(n,1),即r=1时结论成立。假设r=k-1时结论成立,即k-1维超平面M上的i(i=n-1,…,1)条k-2维超直线可把M分割为:W(n-1,k-1)=C(n-1,0)+C(n-1,1)+C(n-1,2)+…+C(n-1,k-1)W(n-2,k-1)=C(n-2,0)+C(n-2,1)+C(n-2,2)+…+C(n-2,k-1) …… …… …… …… …… …… …… W(k-1,k-1)=C(k-1,0)+C(k-1,1)+C(k-1,2)+…+C(k-1,k-1) W(k-2,k-1)=C(k-1,0)+C(k-1,1)+C(k-1,2)+…+C(k-2,k-2) …… …… …… …… …… …… …… W(2,k-1)=C(2,0)+C(2,1)+C(2,2) W(1,k-1)=C(1,0)+C(1,1) 而由(1)可得 W(n,k)-W(n-1,k)=W(n-1,k-1) W(n-1,k)-W(n-2,k)= W (n-2,k-1) …… …… …… …… …… …… …… W(2,k)-W(1,k)=W(1,k-1) 将上面n-1个等式两端相加得 W(n,k)-W(1,k)=W(1,k-1)+W(2,k-1)+…+W(n-1,k-1)因为一个k-1维超平面只能把经过它的k维超平面切为两部分,因此W(1,k)=2=1+C(1,1),从而有 W(n,k)=C(n,0)+[C(1,1)+C(1,0)+C(2,0)+…+C(n-1,0)] +[C(1,1)+C(2,1)+C(3,1)+…+C(n-1,1)] +[C(2,2)+C(3,2)+…+C(n-1,2)] …… …… …… …… …… +[C(k-1,k-1)+C(k,k-1)+…+C(n-1,k-1)] (2)由杨辉三角恒等式C(m,n)+C(m,n+1)=C(m+1,n+1)有C(1,1)+C(1,0)+C(2,0)+…+C(n-1,0)=[C(1,1)+C(1,0)]+C(2,0)+…+C(n-1,0)=[C(2,1)+C(2,0)]+…+C(n-1,0)…… …… …… …… ……=C(n-1,1) +C(n-1,0)=C(n,1)同理可得:C(1,1)+C(2,1)+C(3,1)+…+C(n-1,1)=C(n,2) C(2,2)+C(3,2)+…+C(n-1,2)=C(n,3) …… …… …… …… …… C(k-1,k-1)+C(k,k-1)+…+C(n-1,k-1)=C(n,k)代入(2)得 W(n,k)=1+C(n,1)+C(n,2)+C(n,3)+…+C(n,k) W(n,k)=C(n,0)+C(n,1)+C(n,2)+C(n,3)+…+C(n,k)由数学归纳法原理知,对任意的r维空间,n个r-1维超平面最多可以把空间切割成W(n,r)部分,则W(n,r)=C(n,0)+C(n,1)+C(n,2)+…+C(n,r)。
    +11 2008-08-14 举报
热门人气推荐
免责声明:问答内容均来源于互联网用户,房天下对其内容不负责任,如有版权或其他问题可以联系房天下进行删除。