-
-
轻风之声
丨Lv 4
1)已知,M,N为三角形ABC的边BC上的两个点 ,且满足BM=MN=NC,一条平行于AC的直线交AB,AM,AN的延长线于点D,E,F.求证EF=3DE. 2)已知,M,N分别是正六边形ABCDEF的边CD,DE的中点,BN与AM相交于点P,试求:BP:PN的值.证(1) 过M作MG∥AC交AC于G,过N作NH∥AC交AC于G,交AM于K。显然有 KN=AC/2, HN=2AC/3, MG=AC/3, MG=HN/2。所以 HK=HN-KN=2AC/3-AC/2=AC/6,故得 KN=3HK.根据相似比 AE/AK=DE/HK=EF/KN,从而得:3DE=EF。解(2) 连MN。设正六边形ABCDEF的外接圆半径为R,圆心为O,则正六边形ABCDEF的边长为R,因为:R^2-PO^2=BP*PN,R^2-PO^2=AP*PM,所以A,B,M,N四点共圆。故有 EF/AB=PM/BP, AB/EF=AP/PN。易求得:EF/AB=√3/2,所以 AP=2PN/√3, PM=√3BP/2.易证 AM=BN,于是 BN=BP+PN=AP+PM=2PN/√3+√3BP/2.<==> BP(2-√3)/2=PN(2√3-3)/3<==> BP/PN=[(2√3-3)/3]/[(2-√3)/2]<==> BP/PN=2/√3.