0$房天下问答|对任意的正偶数n,求证1-1/2+1/3.....+1/(n-1)-1/n=2[1/(n+2)+(1/n+4)+.......+1/2n]$https://m.fang.com/ask/ask_139244.html$https://static.soufunimg.com/common_m/m_public/201511/images/asksharedefault.png
packc/pages/ask/detail/detail?askid=139244
-
对任意的正偶数n,求证1-1/2+1/3.....+1/(n-1)-1/n=2[1/(n+2)+(1/n+4)+.......+1/2n]
用数学归纳法证...
更多
共1个回答
-
-
-
我很看好你
丨Lv 7
证明:当n=2时,左边=1-1/2=1/2,右边=2(1/(2+2))=1/2,左边=右边,成立假设当n=2k时,成立,即1-1/2+1/3.....+1/(2k-1)-1/2k=2[1/(2k+2)+(1/2k+4)+.......+1/(4k)]则当n=2k+2时,左边=1-1/2+1/3.....+1/(2k-1)-1/2k+1/(2k+1)-1/(2k+2)因为1-1/2+1/3.....+1/(2k-1)-1/2k=2[1/(2k+2)+1/(2k+4)+.......+1/(4k)]所以左边=2[1/(2k+2)+1/(2k+4)+...+1/(4k)]+1/(2k+1)-1/(2k+2)=2[1/(2k+2)+1/(2k+4)+...+1/(4k)]+2/(4k+2)-2/(4k+4)=2[2/(4k+4)+1/(2k+4)+...+1/(4k)+1/(4k+2)-1/(4k+4)]=2[1/(2k+4)+1/(4k+6)+...+1/(4k)+1/(4k+2)+1/(4k+4)]=右边所以成立证毕
免责声明:问答内容均来源于互联网用户,房天下对其内容不负责任,如有版权或其他问题可以联系房天下进行删除。

关注成功